Influence of macromolecular architecture on the crystallization of (PCL<sub>2</sub>)-b-(PS<sub>2</sub>) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues (2024)

Abstract

Miktoarm block copolymers (A2B2) composed of two poly(ε-caprolactone) (PCL) arms and two polystyrene arms (PS) were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Linear analogue PCL-b-PS diblock copolymer samples were also synthesized in almost identical composition regarding the content of each component. Almost all samples were found to be weakly segregated in the melt according to small angle X-ray scattering (SAXS) experiments. While the expected morphology (revealed by transmission electron microscopy, TEM) was found for the linear diblock copolymers, the miktoarm block copolymer samples exhibited different morphologies that indicated more entropie restrictions for chain stretching. For example, when a linear diblock copolymer with 41 % PCL formed lamellae, the analogue miktoarm star copolymer with 39% PCL formed hexagonally packed PCL cylinders in a PS matrix. These results may imply changes in the phase diagram between miktoarm and linear block copolymers that have been previously predicted theoretically, however a larger number of samples should be used to corroborate this hypothesis. Additionally, the effect of polydispersity of the samples as a possible source of phase boundary variations should also be considered. The enhanced topological restrictions in the miktoarm star copolymers were also strongly reflected in the overall crystallization kinetics of the PCL component within the copolymers, as determined by differential scanning calorimetry (DSC). The supercooling needed for crystallization of the PCL component was much larger for the miktoarm star copolymers than for the linear analogue block copolymer samples of similar composition or even of similar morphology, while the crystallization rate was also depressed. The degree of crystallinity of the micro- or nanodomains was also a function of composition (decrease with PS content in the copolymers) or molecular architecture (lower in the stars than in linear copolymers) and as a general rule decreased as the level of confinement for the PCL component increased. Several kinetic theories of crystallization were applied to the overall isothermal crystallization data and regardless of the theory employed, the parameters proportional to the energy barriers for overall crystallization also increased with the confinement of the PCL component. Both the confinement degree and the influence of molecular architecture on the nucleation and crystallization of the PCL component generally increased with the content of covalently bonded glassy PS.

Original languageEnglish
Pages (from-to)8353-8364
Number of pages12
JournalMacromolecules
Volume42
Issue number21
DOIs
StatePublished - 10 11 2009
Externally publishedYes

Access to Document

Other files and links

Fingerprint

Dive into the research topics of 'Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues'. Together they form a unique fingerprint.

View full fingerprint

Cite this

  • APA
  • Author
  • BIBTEX
  • Harvard
  • Standard
  • RIS
  • Vancouver

Lorenzos, A. T., Müller, A. J., Lin, M. C., Chen, H. L., Jeng, U. S., Priftis, D., Pitsikalis, M., & Hadjichristidis, N. (2009). Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues. Macromolecules, 42(21), 8353-8364. https://doi.org/10.1021/ma901289t

Lorenzos, A. T. ; Müller, A. J. ; Lin, Ming Champ et al. / Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues. In: Macromolecules. 2009 ; Vol. 42, No. 21. pp. 8353-8364.

@article{80ea1c1f88c4460c9fed05c7b80edada,

title = "Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues",

abstract = "Miktoarm block copolymers (A2B2) composed of two poly(ε-caprolactone) (PCL) arms and two polystyrene arms (PS) were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Linear analogue PCL-b-PS diblock copolymer samples were also synthesized in almost identical composition regarding the content of each component. Almost all samples were found to be weakly segregated in the melt according to small angle X-ray scattering (SAXS) experiments. While the expected morphology (revealed by transmission electron microscopy, TEM) was found for the linear diblock copolymers, the miktoarm block copolymer samples exhibited different morphologies that indicated more entropie restrictions for chain stretching. For example, when a linear diblock copolymer with 41 % PCL formed lamellae, the analogue miktoarm star copolymer with 39% PCL formed hexagonally packed PCL cylinders in a PS matrix. These results may imply changes in the phase diagram between miktoarm and linear block copolymers that have been previously predicted theoretically, however a larger number of samples should be used to corroborate this hypothesis. Additionally, the effect of polydispersity of the samples as a possible source of phase boundary variations should also be considered. The enhanced topological restrictions in the miktoarm star copolymers were also strongly reflected in the overall crystallization kinetics of the PCL component within the copolymers, as determined by differential scanning calorimetry (DSC). The supercooling needed for crystallization of the PCL component was much larger for the miktoarm star copolymers than for the linear analogue block copolymer samples of similar composition or even of similar morphology, while the crystallization rate was also depressed. The degree of crystallinity of the micro- or nanodomains was also a function of composition (decrease with PS content in the copolymers) or molecular architecture (lower in the stars than in linear copolymers) and as a general rule decreased as the level of confinement for the PCL component increased. Several kinetic theories of crystallization were applied to the overall isothermal crystallization data and regardless of the theory employed, the parameters proportional to the energy barriers for overall crystallization also increased with the confinement of the PCL component. Both the confinement degree and the influence of molecular architecture on the nucleation and crystallization of the PCL component generally increased with the content of covalently bonded glassy PS.",

author = "Lorenzos, {A. T.} and M{\"u}ller, {A. J.} and Lin, {Ming Champ} and Chen, {Hsin Lung} and Jeng, {U. Ser} and D. Priftis and M. Pitsikalis and N. Hadjichristidis",

year = "2009",

month = nov,

day = "10",

doi = "10.1021/ma901289t",

language = "英语",

volume = "42",

pages = "8353--8364",

journal = "Macromolecules",

issn = "0024-9297",

number = "21",

}

Lorenzos, AT, Müller, AJ, Lin, MC, Chen, HL, Jeng, US, Priftis, D, Pitsikalis, M & Hadjichristidis, N 2009, 'Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues', Macromolecules, vol. 42, no. 21, pp. 8353-8364. https://doi.org/10.1021/ma901289t

Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues. / Lorenzos, A. T.; Müller, A. J.; Lin, Ming Champ et al.
In: Macromolecules, Vol. 42, No. 21, 10.11.2009, p. 8353-8364.

Research output: Contribution to journalJournal Article peer-review

TY - JOUR

T1 - Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues

AU - Lorenzos, A. T.

AU - Müller, A. J.

AU - Lin, Ming Champ

AU - Chen, Hsin Lung

AU - Jeng, U. Ser

AU - Priftis, D.

AU - Pitsikalis, M.

AU - Hadjichristidis, N.

PY - 2009/11/10

Y1 - 2009/11/10

N2 - Miktoarm block copolymers (A2B2) composed of two poly(ε-caprolactone) (PCL) arms and two polystyrene arms (PS) were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Linear analogue PCL-b-PS diblock copolymer samples were also synthesized in almost identical composition regarding the content of each component. Almost all samples were found to be weakly segregated in the melt according to small angle X-ray scattering (SAXS) experiments. While the expected morphology (revealed by transmission electron microscopy, TEM) was found for the linear diblock copolymers, the miktoarm block copolymer samples exhibited different morphologies that indicated more entropie restrictions for chain stretching. For example, when a linear diblock copolymer with 41 % PCL formed lamellae, the analogue miktoarm star copolymer with 39% PCL formed hexagonally packed PCL cylinders in a PS matrix. These results may imply changes in the phase diagram between miktoarm and linear block copolymers that have been previously predicted theoretically, however a larger number of samples should be used to corroborate this hypothesis. Additionally, the effect of polydispersity of the samples as a possible source of phase boundary variations should also be considered. The enhanced topological restrictions in the miktoarm star copolymers were also strongly reflected in the overall crystallization kinetics of the PCL component within the copolymers, as determined by differential scanning calorimetry (DSC). The supercooling needed for crystallization of the PCL component was much larger for the miktoarm star copolymers than for the linear analogue block copolymer samples of similar composition or even of similar morphology, while the crystallization rate was also depressed. The degree of crystallinity of the micro- or nanodomains was also a function of composition (decrease with PS content in the copolymers) or molecular architecture (lower in the stars than in linear copolymers) and as a general rule decreased as the level of confinement for the PCL component increased. Several kinetic theories of crystallization were applied to the overall isothermal crystallization data and regardless of the theory employed, the parameters proportional to the energy barriers for overall crystallization also increased with the confinement of the PCL component. Both the confinement degree and the influence of molecular architecture on the nucleation and crystallization of the PCL component generally increased with the content of covalently bonded glassy PS.

AB - Miktoarm block copolymers (A2B2) composed of two poly(ε-caprolactone) (PCL) arms and two polystyrene arms (PS) were synthesized by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Linear analogue PCL-b-PS diblock copolymer samples were also synthesized in almost identical composition regarding the content of each component. Almost all samples were found to be weakly segregated in the melt according to small angle X-ray scattering (SAXS) experiments. While the expected morphology (revealed by transmission electron microscopy, TEM) was found for the linear diblock copolymers, the miktoarm block copolymer samples exhibited different morphologies that indicated more entropie restrictions for chain stretching. For example, when a linear diblock copolymer with 41 % PCL formed lamellae, the analogue miktoarm star copolymer with 39% PCL formed hexagonally packed PCL cylinders in a PS matrix. These results may imply changes in the phase diagram between miktoarm and linear block copolymers that have been previously predicted theoretically, however a larger number of samples should be used to corroborate this hypothesis. Additionally, the effect of polydispersity of the samples as a possible source of phase boundary variations should also be considered. The enhanced topological restrictions in the miktoarm star copolymers were also strongly reflected in the overall crystallization kinetics of the PCL component within the copolymers, as determined by differential scanning calorimetry (DSC). The supercooling needed for crystallization of the PCL component was much larger for the miktoarm star copolymers than for the linear analogue block copolymer samples of similar composition or even of similar morphology, while the crystallization rate was also depressed. The degree of crystallinity of the micro- or nanodomains was also a function of composition (decrease with PS content in the copolymers) or molecular architecture (lower in the stars than in linear copolymers) and as a general rule decreased as the level of confinement for the PCL component increased. Several kinetic theories of crystallization were applied to the overall isothermal crystallization data and regardless of the theory employed, the parameters proportional to the energy barriers for overall crystallization also increased with the confinement of the PCL component. Both the confinement degree and the influence of molecular architecture on the nucleation and crystallization of the PCL component generally increased with the content of covalently bonded glassy PS.

UR - http://www.scopus.com/inward/record.url?scp=70449380730&partnerID=8YFLogxK

U2 - 10.1021/ma901289t

DO - 10.1021/ma901289t

M3 - 文章

AN - SCOPUS:70449380730

SN - 0024-9297

VL - 42

SP - 8353

EP - 8364

JO - Macromolecules

JF - Macromolecules

IS - 21

ER -

Lorenzos AT, Müller AJ, Lin MC, Chen HL, Jeng US, Priftis D et al. Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues. Macromolecules. 2009 Nov 10;42(21):8353-8364. doi: 10.1021/ma901289t

Influence of macromolecular architecture on the crystallization of (PCL<sub>2</sub>)-b-(PS<sub>2</sub>) 4-Miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues (2024)

References

Top Articles
Latest Posts
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 6089

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.